USS Ingersoll (DD 990), 28th ship in the series of Spruance-class destroyers. The very fast, highly maneuverable destroyer, powered by four jet engines, joined the Pacific Fleet in 1980. Photo courtesy of Litton Industries.
TEAMWORK—TACKLING A TRICKY BUSINESS
Refueling at sea is a study in cooperation and precision

REACHING FOR THE STARS
The determination of America’s first man in space

A LIFT FOR THE NAVY
Ballooning is fun and an eye catcher for Navy recruiting

THE REWARDS ARE GREAT
A glimpse inside the operating room world of OR technicians

A BITTERSWEET EXPERIENCE
Navy divers search for Potomac River plane crash victims

DELIVERING THE GOODS
Midwinter airdrops keep South Pole station supplied

EVOLUTION OF THE DESTROYER
Today’s Spruance-class destroyer is generations away from 1904 torpedo boat destroyers

ANOTHER TYPE OF THREAT
An explanation of Soviet chemical warfare agents

Departments
22 Bearings
44 Currents
48 Mail Buoy/Reunions

Cover
The U.S. Navy Balloon Team, one of 425 participants in the 10th Annual International Balloon Fiesta at Albuquerque, N.M. Back cover insert: Navy balloonist Cmdr. Dick Butterfield adds hot air from the propane burners to maintain altitude. Photos by PH1 Jim Preston.

Editor: John F. Coleman; News Editor: Joanne E. Dumene.
Associates: Richard Posier (Layout), Michael Tuffli (Art).
Contributing Staff: JOC James R. Giusti, JO1 Lon Cabot, Marge Holtz, JO2 J.D. Leipold, JO2 Vickie J. Oliver, JO3 Joy Hill-Payne.
Research: Elaine McNeil.

Send mail to: All Hands, Hoffman No. 2, 200 Stovall St., Alexandria, VA 22332.
Phone: (202) 325-0495; AUTOVON 221-0495.
Message: NAVINRELACT WASHINGTON DC
Teamwork

Tackling a Tricky Business

Cutting through the choppy waters of the eastern Mediterranean, the destroyer **USS John Rodgers** (DD 983) carefully maneuvered alongside the amphibious assault ship **USS Saipan** (LHA 2).

"Welcome alongside, John Rodgers," boomed a voice over Saipan's IMC system. "Prepare to receive shot line."

The command echoed over the open waters as the refueling detail aboard John Rodgers scurried away from the shotline's target area.

Then a loud crack followed by a thud brought the destroyer's crewmen back to their refueling station positions. Hand over hand, they pulled the thick black refueling hose from Saipan until it was securely coupled to the destroyer's refueling station.

Aboard Saipan, crewmen worked in unison at the starboard refueling station. Chief Warrant Officer George Estes, Saipan's bos'n, stood at the center of action. He barked an occasional order and stepped in to assist his detail as needed. For the most part, he watched his men work with precision timing and teamwork to make the refueling a success.

"When we refuel a ship like John Rodgers, everyone has to be on his toes," said Estes. "The rolling, pitching and swaying of the ships and the tension of the wires and hoses that connect them make refueling evolutions like this one a tricky business."

Phone talkers and signalmen, using signal paddles, provided communications during the refueling.
Opposite page: Saipan crewmen watch USS John Rodgers (DD 983) come alongside for refueling. Left: BM2 Leo Grudzinski and other members of Saipan's refueling team rig for refueling. Below: BM2 Grudzinski and Saipan's bos'n, CW03 George Estes. Bottom: Waiting for the action to begin.
“A green paddle indicates that pumping is either commencing or being secured,” said Estes.

A red paddle is used when refueling rigging is transferred, and an amber paddle indicates that blowdown—clearing fuel out of the hose to ensure there are no leaks—should either start or stop.

As Estes turned his attention to the mass of hoses and wires spanning the distance between the two ships, Chief Boatswain’s Mate Charlie Dreblow, Saipan’s deck department CPO and the man coordinating communications with John Rodgers, shouted that the fuel transfer was going smoothly.

“Just make sure those hoses stay 2 to 3 feet off the water,” said Estes. “And make sure everyone stays clear of the bites and lines.

“Safety is one of the main concerns in a successful refueling operation,” he added. “In this type of operation, safety includes making sure everyone stays forward of the refueling rig, clear of all taut lines, wears the right protective gear and handles lines properly.”

After five years aboard the oiler USS Truckee (AO 147), Estes is no stranger to the many safety requirements for underway refuelings. He watched the process step by step and made sure every safety rule was followed to the letter.

“Refueling goes a lot smoother when you have people like mine working the rigging and lines,” he said.
Estes’ detail knew how to do the job, and even though underway refuelings weren’t routine for *Saipan*, more than 300,000 gallons of fuel were transferred in just over three hours.

“It’s definitely not one of the easier jobs aboard ship,” said Estes. “But it has to be done, and these guys know that.”

—Photos and text by J01 Lon Cabot

APRIL 1982
Did Christopher Columbus think of himself as an ordinary sailor, a man trying to show something to the world or a man trying to prove something to himself? These same questions could be asked of America's first man in space, Alan Bartlett Shepard Jr., a man who is a "Columbus" in his own right. Recently, Rear Admiral Shepard, now retired, was interviewed by a fellow alumnus during Homecoming Day at Admiral Farragut Academy in Toms River, N.J. It was the 40th reunion of his class of '41.

1961. The Korean conflict is over, but
the United States is in the midst of the Cold War. President John F. Kennedy persuades Congress to support the manned space program. Seven military test pilots have been selected to train, but only one man will make the first flight—the man would become the American Columbus of outer space. On April 12, 1961, to the great disappointment of Americans, Yuri Gagarin becomes the first human to complete one revolution of the earth, the first to face the unknowns of outer space.

Twenty-three days later, the eyes of America were on a small black projectile atop a Redstone rocket in its final stages before takeoff from Cape Canaveral in Florida. In moments, the man inside the projectile would ride the Redstone rocket into outer space. That man was Commander Shepard of Derry, N.H. May 5, 1961. “... five ... four ... three ... two ... one ... we have ignition ... we have liftoff!!” Alan Shepard soars into the morning sky. The Redstone reaches Mach 1 in 45 seconds; a minute later, Mach 6. The top of the arc, then weightlessness! He notices a metal washer float before his eyes. What an exhilarating experience. He notices the earth’s curvature, the beautiful Caribbean Islands, and then he begins to descend. On the way down, Shepard feels g-forces in excess of 11 times the gravitational pull of the earth. All in all, the entire flight took 15 minutes. Of those minutes, Shepard has one very vivid memory:

“It was the moment after the landing ... when I’d been picked up by Navy helicopters and flown back to land aboard the deck of the USS Lake Champlain (CVS 39). To see the total flight deck covered with Navy men cheering and waving and laughing ... shouting and yelling. It was really a very poignant, moving moment ... to see the Navy guys out there, the guys that I loved so well, known so long ... being the first to greet me. It was a very emotional moment.”

As he stepped from the helicopter, hundreds cheered, applauded and waved; hundreds of eyes beheld a man who had gone through an experience known to only one other: the Russian Gagarin. Next day, President Kennedy pinned the Distinguished Service Medal on Shepard. That same day, hundreds of thousands turned out to give him a welcoming parade up Pennsylvania Avenue in Washington, D.C. America was in the space race!

May 25, 1961. President Kennedy speaks before Congress: “Now it is time to take longer strides ... I believe this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the moon and returning him safely to earth ...”

1971. Almost one decade to the date of Kennedy’s address, not one but two men stand on the moon. What follows is the actual transcript of Feb. 2, 1971, at 6:08 a.m. CST:

CAPCOM: Stand by.
Shepard: Houston, what you are seeing on the TV and what you might recognize in my hand is the handle for scraping up lunar dust samples which happens to have a genuine six iron snapped on the bottom. In my left hand I have a little white pellet that’s familiar to millions of Americans. I drop it down. Unfortunately the suit is so stiff I can’t do this with both hands, but I’m going to try a little sand trap shot here.

Mitchell: Hey, you got more dirt than ball that time.
Shepard: I got more dirt than ball. Here we go again.
CAPCOM: That looked like a slice to me, Al.
Shepard: Here we go ... straight as a die—one more. ... miles and miles and miles ...

With an improvised six iron, Shepard swings, connects and creates a new
Alan Shepard

sport—lunar golf. At a later date, Shepard remarked:

“You know how golfers are. They’re even worse than fishermen when it comes to counting the number of strokes, or measuring the inches or the length of fish. I’m not going to talk about the length of the six iron shot at all . . . but I want to say the real reason for doing this was sort of a scientific experiment . . . I am happy to report . . . because of the lack of atmosphere, regardless of how badly you hit them, they’ll go straight.”

That ball, quite possibly, is still orbiting the moon.

But this was still 1971; the Vietnam War had not ended. Many, then, did not have the luxury to contemplate a man walking on the moon. It would not be long before technology would provide the roving vehicle (lunar rover) and driving on the moon became a reality.

Besides the joys of one-sixth gravity, Shepard had other things to think about. He would still face a danger that far exceeded any on his first flight. He could not stay on his “old friend,” the moon. He would have to re-enter the earth’s atmosphere and land in the ocean. Once again the Navy would send helicopters to greet him. This time, however, he would not be alone. He had Stuart A. Roosa and Edgar D. Mitchell, the two other shipmates of Apollo 14, to consider.

The ride home and subsequent splashdown were flawless. The helicopters arrived well within the parameters of safety.
At a White House dinner on March 1, 1971, President Richard M. Nixon presented an award to Shepard. It read:

"Whereas, Captain Alan B. Shepard, U.S. Navy, was the first man to transport a golf ball into outer space. And, whereas, using the moon as a tee, on the third or fourth ‘swing,’ he propelled aforementioned pellet possibly further than such an object has ever been propelled before, and, whereas, the likelihood exists that it fell eventually into a small crater and, thus, became the first celestial hole-in-one. Therefore, all who are present and all who read this certificate in years to come, know ye that he has been invested with the distinguished order of lunar duffer"

Apollo 14 brought home a great deal of information besides the “experiment” involving Shepard’s golf sand shot. Industry, however, would have to wait five to 10 years before much of the lunar information would filter into everyday life. Shepard’s contemporaries in research and development would take this material and generate tremendous technologies—technologies based on the demands of industry and the demands of the military. Calculator watches, the lunar rover, microchips, and countless other miniature and large products had their beginnings from the early space program. Many other developments are yet to be realized.

April 12, 1981. At 7:00:04 a.m. EST; the space shuttle Columbia lifts off from its pad at Cape Canaveral—exactly 20 years from the date that Yuri Gagarin became the first human in outer space, and just 23 days short of 20 years after Shepard and others entered the race for the moon. Today, however, Shepard’s contemporaries would not have to wait another decade for Columbia’s information to filter into daily life. Shepard said: “Industry will be able to receive instantaneous benefit because of this (the shuttle flight). You’re going to see experiments in the layers of the ozone, the conducting of experiments on close earth’s environment, with pollution in mind . . . studying crops, studying geological formations. The kinds of things which will be more beneficial to society as a whole.”

Still talking about the space shuttle, Shepard reminded others to keep in mind “the idea of keeping the military in space on a
paying basis ... for whatever purpose they wish to use it. The shuttle offers potential in the areas of surveillance, detection and, ultimately, defense. The shuttle offers much to the military.”

Shepard only recently retired from active service and is no longer connected with the National Aeronautics and Space Administration. He is now interested in real estate development. “I like being my own boss. I enjoy being in business for myself. The pay is a lot better than going to the moon, I can tell you that.”

Oct. 25, 1981. Retired Admiral Shepard is keynote speaker at the alumni Admiral Farragut Academy homecoming—“America’s first preparatory school with naval training.” Yet Shepard valued his one year at Farragut above many of his other experiences. “Farragut,” Shepard said, “is where I began to have a sense of discipline.” This was the discipline he needed to prepare himself for the Naval Academy, and the same discipline was needed for both his Mercury flight and the subsequent Apollo flight.

“You’ve done something thousands of times, but you know that you want to do it again. You’ve begun a process in which you must succeed upon the first attempt, for there is no room for error. . . . this discipline is very similar to military discipline . . . but it goes beyond that . . . it is much deeper . . . It is far more personal.”

This discipline accepts the limitations of the human body, while at the same time reaches for the stars, stretches the “envelope” or exceeds the limits to extremes one thinks he or she needs to go to succeed. Shepard asserts that there is a distinct difference between discipline connected with the military and the more personal “inner discipline” of striving to successfully complete any given task. It is the desire to be the very best in one’s chosen field—in pride, in persistence and, mostly, in internal confidence.

Shepard subsequently graduated from Annapolis and became a Navy pilot. He flew more than 8,000 hours including combat and as a test pilot. He flew hundreds of hours of successful missions in almost every new Navy aircraft. With the discipline he learned at Farragut, he became the American Columbus of outer space.

In his keynote speech, Shepard said:
“Werner Von Braun (the rocket and space pioneer) told me that, as a boy, one day he decided that his hobby, rockets, was too important for him to attend school. He spent the day testing a model rocket. After word reached his mother that he wasn’t in school, she waited at the door to greet him when he returned—3 p.m. no Werner; 5 p.m. no Werner.

“He came home very late, smelling of smoke, a real mess. His mother, at the door, said: ‘So Werner, they tell me you missed school today. So how come?’

‘Young Werner looked up and smiled. ‘Yah, momma, today I missed school. But tomorrow, momma, tomorrow I’m gonna hit it.’”

Shepard reflects Von Braun’s confidence as well as his sense of humor. Still, he remains humble. He is a sought after “autograph signer.” It is amazing that he and his wife, Louise, can put up with the thousands of people who seek his autograph, want to shake his hand or take a picture of him. It must be exasperating; this has been going on for 20 years! Shepard wouldn’t have it any other way. “America has done so very much for me,” he said.

Shepard simply believes in persistence and determination. There are many other Farragut alumni who have progressed in the Navy. Like Shepard, they agree that a disciplined self is the difference between excellence and mediocrity.

“I really couldn’t have done it without the support of the American people, the Navy, my wife Louise and my parents,” he said. “I’m not as philosophical as some of the other astronauts. My life really hasn’t been changed because of my experiences during the last two decades.”

Admiral Shepard has proven beyond doubt that neither the sky nor the stars are any limit to one’s abilities, one’s ambitions and one’s desires. “Given a disciplined self,” he said, “all things are possible.”

—Story and art by DMS! R. M. Henry
Two headlights cut through the early morning darkness as the Navy six-pack pickup truck followed a course across the desert like field. The truck, carrying several people, was from the U.S. Naval Weapons Evaluation Facility at Albuquerque, N.M. It came to a stop before a partially buried tire with a white “B-6” painted on it.

Captain Denny Weichman, the facility’s commanding officer, was the first to jump from the truck. He cupped his hands before his mouth and blew on his numb fingers, trying to warm them.

Off to one side, a group had already formed at the site under an illuminated roster board which was covered with lists of names and starting times.

Out of this crowd, Navy people emerged and made their way to where Weichman was standing—first a supply officer, then several jet pilots followed by several enlisted men.

The aroma of funnel cakes began to fill the air around the fair like atmosphere as the Navy people, talking and sipping from steaming cups of coffee, gathered around the tailgate of the newly arrived pickup.

Suddenly, a loudspeaker blared to life. Heads swung ’round, and eyes caught sight of a decorated weather balloon as it was released by someone in the crowd. Everyone watched it drift slowly up and away into the brightening sky.

Conversations in the crowd picked up again. Yet, the eyes of onlookers never left the soaring balloon. Excitement took hold of the gathering as the now faint speck suddenly changed direction and sped north out of sight.

Glancing at his watch, Weichman gestured to a spot off to his left. The waiting group of sailors went into action.

From the back of the pickup they took a gas-powered propeller fan, several large metal cylinders, a huge canvas bag and a double-handle wicker basket, which looked like it could comfortably suit the picnic needs of a fairy-tale giant.

The silky contents of the canvas bag were spilled out onto the ground according to the captain’s directions, and the neck, or narrow end of the bulb-shaped mass, was fastened to the wicker basket. Then, a starter coaxed the fan to life, and its propeller began forcing air into the billowing mass of nylon.

All around, other mammoth bags began to grow. The roaring engines drowned out all conversation; even shouted commands could be only faintly heard. From every quarter, blasts of ignited propane began shooting flames and hot air into the mushrooming forms.

Commander J.J. McBride, airborne weapons publications department head at NWEF, entered an opening at the far end of the Navy group’s mass of silk which was still on the ground. Backlit by early morning sun, the glowing white mass grew around him, revealing a pattern of jagged red and blue stripes, framing four huge blue letters—YVAI.

Now with McBride’s inspection complete and the vent slit sealed, Weichman, at the burners, shot fire into the mouth of the waking hulk until
Clockwise from above: Blasts of ignited propane gas heat the air inside the balloon to give it lift. Within minutes, hundreds of inflated, colorful balloons take to the skies of Albuquerque. Two youngsters at the fiesta trade balloon pins with Navy crewmen AE3 Victor Warren (left) and AZC Wayne Hoehne. One by one, balloons float away from the launch site. The stuffed Navy anchor, which adorns a guideline used in inflating and deflating the balloon, is an attention getter.

the full-grown bag of hot air stood upright. Cheers greeted the Navy group's efforts. All around, hundreds of colorful, bobbing counterparts slowly followed suit.

Staring at the now 60-foot-high balloon in front of him, a small boy in the crowd tugged frantically at his father's trousers. "Look Dad, it's the Navy balloon. Can you see it, Dad?"

In all, 425 hot air balloons took to the air on this, the 10th anniversary of the Albuquerque International Balloon Fiesta. The sky filled with breathtaking, strikingly colorful patterns of stripes, circles, zig-zags and globes.

"The balloon fiesta is sorta like our homecoming football game," explained McBride, leader of the 10-man Navy team. "We are all stationed here, and our families get the opportunity to see the whole team together; also, it lets the people from the facility and the city see us. This fiesta attracts about 500,000 people over the eight days."

Another of the Navy's balloon pilots, Commander Andy Sewell, who wears an old leather aviator's helmet when he's aloft, added, "The fiesta is
like a reward for the voluntary time we all put in during the year.

"We also meet a lot of balloonists from around the country. With this being the largest single ballooning event in the world, it's something of a reunion."

Ballooning began in 1783 when two Frenchmen, Joseph and Jacques Montgolfier, took to the skies outside of Paris in a paper hot-air balloon. The sport has been growing ever since.

Helium-filled balloons and their ability to sustain long hours in flight without fuel replenishment led to the development of massive airships and dirigibles early in this century. The U.S. Navy saw the beginning of its lighter-than-air program in 1915, when the first contract for an airship was awarded.

Used for anti-submarine warfare, search and convoy escort missions, the Navy's lighter-than-air program lasted until 1961. The last flight of a Navy airship was on Aug. 31, 1962.

But as a sport, hot-air ballooning was born only recently thanks to two key developments: a lightweight, efficient propane burner for generating heat and a tough lightweight nylon fabric for the envelope.

Albuquerque became known as the balloon capital of the world because of its year-round favorable temperature and wind conditions—two elements which govern the lives of balloonists.

Balloons fly on an air density principle. "The amount of heat required to lift a balloon from the ground is dependent on the size of the balloon and the surrounding temperature," explained Commander Dick Butterfield, who will be taking over as team leader when McBride transfers later this year.

"And we are concerned with surface winds. We can launch and recover with
Clockwise from above: Chasing, an essential phase of ballooning, is almost as much fun as flying. After the day's final flight, a vent is opened at the top of the balloon to allow the hot air to escape. Looking up at the red, white and blue Navy balloon. Everyone around the landing area helps fold the huge nylon envelope. A license plate of an avid balloonist is evidence of Albuquerque's claim as "the balloon capital of the world." Opposite page: Two young boys shout greetings to the passing Navy balloon.
reasonableness safety with a maximum of seven to 10 knots of wind. At higher altitudes, it doesn’t matter how fast the wind travels because you’re floating along with it,” Butterfield added.

In Albuquerque, which is more than 5,000 feet above sea level, the temperatures are pretty favorable all year, and there’s a lot of open space to fly. But the big thrill comes when one is in the “Albuquerque Box,” a condition where the wind travels in opposite directions at different altitudes. “Basically, it enables you to take off and fly in one direction for a time. Then, by changing altitude, another wind current will bring you right back to where you started,” said crew member Photographer’s Mate First Class John Porter.

“It can make for one heck of a ride,” added Butterfield.

Because of the growing popularity of the sport, Captain Ron Caldwell, the commanding officer of NWEP five years ago, got together with a local recruiter and developed the idea of a Navy balloon to support the Navy’s recruiting effort. “With Recruiting Command’s approval, we got the first Navy balloon in February 1977,” the retired captain recalled. “They decided that since we were willing to volunteer our time to support the program and since Albuquerque had such favorable conditions for training, NWEF would be the home of the Navy balloon and team. We had it on the road by March at an airshow in El Centro, Calif. It was an instant eye-catcher.”

“Our new envelope is a little bit bigger which should reduce the wear and tear of the fabric,” McBride said. “The air temperatures don’t have to be as high as we would have in the smaller envelope to get it off the ground.”

Last year’s season didn’t give the new red, white and blue balloon much rest. Following its first flight in April 1981, the team logged 150 hours, tak-
Balloon Fiesta

Below: The Navy balloon’s anchor suspended from a guideline connected to the top of the 60-foot envelope.

"We're always asked if they get to fly balloons if they join the Navy. We hate to tell them it's strictly advertising, but if we can make a positive impression on young people maybe later they'll think of the Navy."

"We work closely with recruiters, and if we find someone who has specific questions, the experts are there with the answers. The balloon helps break barriers and brings people together."

The team isn’t just made up of Navy pilots and aviation rates. It is open to any active duty people stationed at NWEN, as Lieutenant Chris McKelvy will testify.

The facility’s supply officer, McKelvy came to the command with a degree in veterinary science and a background in fast attack submarines. "When I got here, I saw how the balloon team got around a lot doing public relations for the Navy. I figured with my background, I could give the team a different slant, so I put in my request to join the team and was accepted.

"I really like the recruiting aspect," McKelvy added. "I think the Navy is a good place for some people, and it's enjoyable spreading the word. The balloon lets us get the Navy into places that are remote, where people really don't know what we're all about."

McKelvy, who began working for his private pilot’s license during the winter break, spent most of the 1981 season as part of the other important element of
any balloon, the chase crew.
Any avid balloonist will confess that riding in the chase truck can sometimes be as thrilling as flying in the balloon.
"It's a lot of fun," Weichman said. "This isn't a one-man sport. It takes a group effort to inflate and recover a balloon. Besides, the more people you have, the more fun."

One of the crucial jobs of the chase crew is to help secure the balloon when it lands. But sometimes Mother Nature enjoys playing around a bit.
"We were out at NAS Lemoore, Calif.," Netcher recalled. "Captain Weichman was free flying someone from the base when all of a sudden he had a 90-degree wind shift. He landed on a dirt road right on the edge of an irrigation ditch, but we couldn't hold him, and we were afraid to rip out the balloon because it would then land in the muddy ditch.
"Slowly the basket inched across the road till finally it slid down into the 15-foot ditch, plopping into four feet of mud. The balloon was ripped out and fell safely on the other bank, but the skipper and his passenger got covered with mud."
But if chasing the balloon can be fun, it's up in the air that a balloonist is at home. "Flying it is really getting back to basics," said Weichman, a veteran of Navy tactical jet aircraft. "You really slow down quite a bit, but you drift along in a peaceful, enjoyable way."
Sewell compared ballooning to sailing. "You are at the mercy of the wind.
It's not important how long it may take you to get somewhere, if anywhere. The fun is in how you get there. Once you try it, you're hooked."
But one doesn't just take a ride in a balloon and automatically become a member of this unique society. One must first be initiated into this select group.
This requires the novice to kneel facing the sun as the balloonist prayer is read. With the last line, he receives a generous soaking and handful of dirt upon his head.
Butterfield summed it up—"People do some crazy things when they get around all this hot air."
—Story and photos by PHI Jim Preston
On the other side of the window separating the operating rooms from the scrub area, HM2 Dave Lewis assists during an operation.

The Rewards Are Great

One can't see frowns or smiles when they're covered by green surgical masks. Is that a smile or a frown? Can't tell—not until you look into the eyes. That's where you see the anguish these people deal with every day.

It is hard to distinguish one rushing, green-garbed figure from another along the third-floor hallway of this sterile world. The hissing of the automatic door marks the passage of a groggy patient into the Naval Regional Medical Center's operating rooms at Camp Lejeune, N.C. Another hiss, and a sleeping patient is wheeled to the recovery room. The surgical teams stay. There's more work to be done.

Most patients say they've seen it all a thousand times before—on TV—and the patient always pulls through. But this is no soap opera. In the fading moments of consciousness, before the anesthetic fully takes over, patients peer into the operating room technician's unconcealed eyes—the last thing they see in the room.

The hospital's 19 "OR techs" are generally young. Their faces don't reflect their emotions or the grueling hours that are the nature of their work. It's a high-priority, low-profile occupation, but the rewards are great.

"There are certainly more lucrative and less demanding professions in the world," said Lieutenant Commander James Trent,
the OR’s assistant supervisor. “It takes a special kind of person to get the rewards of satisfaction from this job. The ones who enter this field expecting a pat on the back or constant recognition are in for a surprise. Satisfaction comes only from seeing recovering patients.”

The technicians’ jobs include constant cleaning of the four operating rooms, sterilizing equipment and replacing linen. They assist surgeons by preparing patients for surgery, monitoring life-support equipment and passing instruments to the surgeons.

Unlike their counterparts in civilian hospitals, military OR techs are allowed more mobility in the operating rooms during surgery. They often move about the operating room performing a number of vital functions. The only thing they don’t do very often is rest.

Theirs is a world of duty; they seldom venture beyond the double doors separating surgery from the rest of the hospital. If they leave the OR, they must scrub completely and change into sterile clothing when returning.

Most techs elect to spend their idle moments in the nearby lounge. Talk casually drifts from one subject to another—from friends and home to liberty plans. Sometimes they discuss a desire for higher medical training.

They share common complaints and constant pressures. The experienced OR techs have learned to cope with their jobs and take the pressures in stride. They have an understanding for the sufferers who come and go in their world.

“We could not possibly function without the techs,” said Navy Captain Elanor Miller, the OR coordinator. “There’s just no way to measure their value. I’ve worked with them overseas in some extremely trying times, and the one thing that always comes out is that they are professional in everything they do.”

You can see it in their eyes.

—Story and photos by Sgt. Danny Lane, USMC
The Perils of Ping Pong

A world champion athlete recently brought his own brand of pingpong to the Naval Supply Center, Oakland, Calif. Mike Dempsey won the last 12 National Wheelchair Athletic Association games in pingpong competition and entered the ranks of world-class players as the pingpong champ of the International Stoke-Mansfield Federation Games seven times.

Dempsey visited Oakland to answer a sports challenge by the center’s pingpong champion, Maurice Holloway, a warehouseman. Holloway had challenged all comers in the supply center’s newspaper, the Oak Leaf. No other employees took him up on it, but Dempsey was contacted. He enthusiastically agreed to the match.

Dempsey came to the center fresh from stardom in the CBS special, “Wheelin’ Steel,” a television show built around the talents of a group of tough and resilient wheelchair athletes.

With him was Skip Alunen, representing San Francisco’s Independent Living Project, a self-help and community resource group run by and for the disabled. Alunen is newer at competitive pingpong but has won two state championships in three years and holds the silver at the national games. Army food inspector Noel Crumsey of the U.S. Army Veterinary Activity, Alameda, an NSC Oakland tenant, rounded out the sports challenge.

Alunen and Crumsey were eliminated in the early rounds, and champ faced champ for the title. After a 21-10 loss in the first game of the best-two-out-of-three series, Holloway came on strong in the second game. With smashes from both sides and crowd-pleasing rallies, the second match resulted in a 21-19 win for Dempsey, who displayed a wide variety of special serves and trick shots.

Captain Thomas G. Craft, the center’s commanding officer, presented the winner’s plaque to Dempsey saying, “We’ve learned today that there are no disabled people, only people with disabilities that can be conquered.”

After the awards ceremony, Dempsey and his coach, Jim Beckford, staged a demonstration of specialty play. Then Dempsey rushed home to prepare for the wheelchair tennis competition in Dallas and to arrange for a move to a new house in Tahoe. He wants to be closer to the ski slopes he’s learning to use.

Did somebody mention “disabled”? —Story by Sharon Knolls

Storm Victims

Three men were pulled from rough seas by helo crewmen assigned to the nuclear-powered aircraft carrier USS Dwight D. Eisenhower (CVN 69) after their sailboat was wrecked by Hurricane Dennis.

William Mead, Dan Herpe and Stanley Israel were rescued by a helicopter crew of HS-5 Nightdippers about 165 miles off the Virginia coast. A Norfolk, Va.-based communications ship, USS Mount Whitney (LCC 20), had picked up the three sailors’ SOS on Aug. 21 and relayed it to Ike.

“We were sailing the boat to Boston from Ft. Lauderdale,” said the 32-year-old Mead, who captained the small sailboat named Morning Mist. “We ran into rough weather about 60 miles off Cape Hatteras on the second day at sea.”

According to Herpe, the seas averaged 40 feet and winds hit 100 knots; unknown to them at the time, the storm was actually Hurricane Dennis.

The hurricane tore part of the boat’s side away and knocked out all the ports; the main engine quit working, and the bat-
Saratoga Springs Adopts Saratoga

The people of Saratoga Springs, N.Y., have good reason to be proud of their heritage, for it was at Saratoga Springs on Oct. 17, 1777, that the British Northern Army surrendered to a ragtag contingent of American Colonials. The “British blunder of 1777” became known as the turning point of the American War for Independence because of its impact on morale and the entry of French forces into the war.

Saratoga will always be known for the role it played in the American Revolution. But today the name is more than synonymous with a great battle which helped to secure Colonial freedom. It also belongs to a 25-year-old, 78,000-ton warship that has helped safeguard that hard-won freedom—USS Saratoga (CV 60). The people of Saratoga Springs wanted the carrier’s crew to know just how proud they felt of the ship that bears their community’s name. So, Saratoga Springs adopted Saratoga just four days before the Navy’s 206th birthday and eight days before the 204th anniversary of the famous battle.

Hosted by the mayor in conjunction with the Saratoga Springs Jaycees and numerous other civic and veterans organizations, the town’s proclamation became known as the “USS Saratoga Adoption.” The week of Oct. 12-18, 1981, was set aside as “USS Saratoga Week.”

The proclamation stated that Saratoga “has been a most formidable vanguard of world peace and freedom and has discharged duties so assigned by the President of the United States of America with never faltering spirit or dedication.” It also requested that the crew provide the residents of Saratoga Springs with all information relative to the ship’s activities in future years.

With the signing of the proclamation came an invitation from the Jaycees for two dozen Saratoga sailors to visit their ship’s namesake during their Appreciation Weekend. Eighteen enlisted men and six officers arrived in the city and were treated to a reception in their honor. Highlighting the weekend were a ceremony and tour sponsored by the U.S. Parks Department at the Saratoga National Historical Battle-Field Park. Other activities included a barbecue, a testimonial dinner and a night on the town.

Machinist’s Mate First Class John Baldwin—who is also a Saratoga Springs Jaycee and is stationed in nearby West Milton, N.Y.—helped sponsor the adoption. He said he hoped the weekend would help build a strong and lasting relationship between the community and ship. Evidently it did—several of the participating sponsors have plans to make the weeklong celebration an annual event.

The Biggest Knot?

Glenn E. O’Neal designed, then tied what he believes may be the world’s largest knot—or at the very least, one of the largest.

For marlinspike enthusiasts, the retired chief boatswain’s mate says his knot is tied in somewhat the same fashion as the “turb’s head.” It is also similar to most ornamental knots, thereby qualifying it as one single knot with 302 tucks in the first pass and a total of 906 tucks complete.

O’Neal took 200 feet of ½-inch-diameter white cotton line to make the anchor. Comparatively speaking, if he had used the same knot tied with 1-inch-diameter line, it would require 1,600 feet of line and measure nearly 20 feet in length.

Checking his knot with the Encyclopedia of Knots, O’Neal discovered his was larger and more detailed than any single knot found in that book.
A Long Wait

"It took me 12 years to finally get the medal," said Navy Hospital Corpsman First Class Kenneth Toline, "and if it hadn't been for a lucky meeting with my old unit commander from Vietnam, I probably wouldn't have it."

Toline, a member of Medical Logistics Company, 3rd Force Service Support Group, was awarded the Silver Star on Oct. 2, 1981.

Toline left Stromsburg, Neb., to join the Navy in 1968. After recruit training and Hospital Corps School, he found himself assigned to the 1st Reconnaissance Battalion, 1st Marine Division in Vietnam.

"We were at a place called 'Freedom Hill' in Da Nang—but we weren't there very much. We spent the majority of our time in the bush."

It was in the bush where Toline found there was more to being a corpsman than holding sick call for Marines at Freedom Hill.

"I was wounded three times in 11 months," said Toline. "The first time we were ambushed while on patrol, and I got shot in the lower left leg. The second time we were also on patrol, and I got hit by shrapnel in the hand and chest."

It was during his last action that Toline was wounded again and earned his Silver Star.

"We were ambushed, and I got hit by machine gun fire in the hand and groin. While giving aid to other Marines and myself, we moved to a landing area and called for a medevac. While on the chopper, I provided covering fire with an M-79 grenade launcher for Marines running to the bird. I guess I was pretty good with it. Anyway, that's why I was recommended for the award."

That third wound also was Toline's return ticket to the states. Command policy was that people wounded three times were sent home.

Back in the states, however, Toline discovered that no Silver Star entry had been made in his records.

"I left active duty in 1972. I still wanted to receive my award and have it entered on my record, but I was always told that these things take time."

In the meantime, he went to pre-med school at the University of Nebraska. But Toline found that raising a family and going to school was expensive, and he recalled the security offered by the Navy.

"I came back in '74," said Toline. "My orders were to Camp Lejeune, N.C. While there, I ran into my old commander from Vietnam, Colonel William C. Drumwright. He asked if I had ever gotten the award. When I told him no, he wrote it up all over again and submitted it. This time it came through."

The citation, which states more explicitly what Toline modestly omitted, reads:

"During the afternoon of Feb. 15, 1970, Toline was on a patrol in the vicinity of Charlie Ridge, Hill 65, Republic of Vietnam, with a squad of reconnaissance Marines when contact was made. . . . During the ensuing firefight, Toline moved to the aid of his platoon commander who had suffered a head wound. After rendering aid, he moved through an open, fire-swept terrain to reach a group of Marines who were also wounded.

"Despite being wounded himself, Toline continued to render aid to his Marine comrades while returning fire to the enemy, operating the secondary radio and refusing aid for himself until all Marines were treated. A request for evacuation was made, but due to weather conditions it was impossible to accomplish. Throughout the night, Toline continued to provide care and treatment to his patients, as well as assuming responsibility for the security of a section of the perimeter.

"By his daring actions and steadfast devotion to duty in the face of great personal risk, Toline reflected the utmost credit upon himself and upheld the highest traditions of the United States Naval service."
War Games in Virginia

River patrol boats and mini-boats cruised the waterfront surrounding the base camp. It was quiet—too quiet.

The defenders knew the enemy had advanced into the area. They knew that multinational terrorist units also were there, supporting the enemy. The question that hung in the midnight air was “When will the enemy make the next move?”

There had been a short conflict the previous evening; another attack was expected before dawn. Now it was almost daybreak. The base camp waited.

Then, the early morning silence was broken by the earsplitting sounds of demolitions, machine guns and small automatic weapons. Pop flares illuminated the still darkened sky.

RivEx 1-81 was in full operation, and the simulated war games were being played to the hilt.

Planned and controlled by active duty and Selected Reserve people of Special Boat Squadron Two, RivEx 1-81 took place one recent weekend at Fort Eustis, Va.

During the exercise, the Blue (friendly) Force was tasked with providing security and defense for the James River Reserve Fleet and all maritime approaches to Fort Eustis. Under the direction of Lieutenant Commander Tom Truxell, Blue Force Commander and Commander Special Boat Unit 24, the Blue Force did the job with enthusiasm and expertise.

Integrating people, combatant craft, helicopters and a radar van, the Blue Force conducted around-the-clock operations against an aggressive Red (enemy) Force led by Commander Dick Moran and made up of active duty and Selected Reserve people from Naval Special Warfare Group Bravo 206 and Special Boat Unit 24.

The Blue team was composed of active duty and reserve people from Special Boat Units 20 and 24, Naval Special Warfare Group Bravo 206, Marine Helicopter Group 46 Detachment Alpha, Mobile Inshore Undersea Warfare Unit 806 and Marine Barracks, Norfolk.

“When the smoke finally cleared early on Sunday morning, neither the Blue Force nor the Red Force could be declared the undisputed victor,” said Truxell, “but everyone involved in RivEx 1-81 benefited. They worked together.”

—Story and photos by SN Nicolette Barker
Wednesday, Jan. 13, had been a fairly routine day for the Navy's Harbor Clearance Unit Two at Little Creek, Va. Commanding officer Lieutenant Commander Stephen Delaplane, heading out the door, remembered one last call that had to be made. Returning to the quarterdeck, he called his executive officer on the intercom. Lieutenant Andrew Hammond answered with a startling statement: "You won't believe what I just heard on the radio. A plane crashed in the Potomac River near Washington National Airport."

Delaplane rushed to the television in the wardroom to confirm the news. In a blinding snowstorm, Air Florida Flight 90, a Boeing 737 jet aircraft en route to Tampa, Fla., from Washington, D.C., had struck the northbound span of the 14th Street Bridge after takeoff and plunged into the icy Potomac River.

As the disaster unfolded, Delaplane put a diving crew on standby and began preparations to deploy a support team, should they be tasked. At 2:30 a.m., Jan. 14, the call for assistance came.

Meanwhile, members of the Naval School, Explosive Ordnance Disposal and the Explosive Ordnance Disposal Technology Center, Indian Head, Md., were also being mobilized. By the afternoon following the crash, Delaplane had been designated the on-scene commander of the diving recovery and salvage operation which would involve divers from his unit, the EOD school, the Coast Guard Strike Team from Elizabeth City, N.C., two Navy divers from the Naval Surface Weapons Center, Dahlgren, Va., and Army divers from the 86th and 511th Engineering Detachments from Fort Belvoir, Va.

The Washington, D.C., Metropolitan Police Department had overall responsibility for the recovery operation. They were supported by the accident investigation team from the Department of Transportation Air Safety Board and the joint military team.

"Within 60 hours of the accident, we had three diving platforms in operation," Delaplane said. "That kind of effort was to become indicative of the selfless cooperation and support that was given by all participants. Everybody knew the job we faced; it was obviously a big objective to achieve.

"During the first two days, it was difficult for the emerging organization to coordinate the wealth of logistical support available. We once asked for 6 cubic yards of gravel to put a better footing on the river bank, and before we knew it, we had six truck loads coming."

The aircraft was thought to be confined to a relatively small area, roughly 700 feet long, 250 feet wide and 30 feet deep. The only visible portion of the aircraft was the tail. Locating and recovering the victims and the wreckage in the ice-covered water posed a monumental task.

In a variety of cold weather suits, the divers literally had to feel their way around in the dark, murky waters. "Visibility down there is anywhere from 6 inches to the length of my arm," said Chief Radioman Ron Campbell, an EOD school instructor. "You can't tell where you are, so you rely on the line handlers and the phones in order to stay on track."
"Once, my line snagged on a big rock, and I couldn’t tell if I was getting signals from the surface or what. Come to find out, I was just talking to the rock.”

It was much the same for Hospital Corpsman Second Class Bob Walker who let most of the air out of his dry suit so he could crawl around on the 8-inch thick mud bottom. During his 87-minute dive, his only discomfort was cold feet.

Campbell explained that contrary to what most people believe, a diver is comfortable in such conditions. “I’d rather be down there in the water than up here manning the station where you’re contending with the cold.”

Every time a diver is in the water, a team of divers works on the surface supporting him. On the dive platform, two people tend the hoses leading to the diver below. Also on the diving platform are a diving supervisor, a master diver who is the overall supervisor, a standby diver, a person working communications, another recording data and still another monitoring the compressor and gauges.
“About 90 percent of diving work is done on the surface,” Master Diver Senior Chief Electronics Technician David Le Jeune said. “Without the support and communications, productivity would be nil after five minutes in the water. Our first concern is the divers’ safety and welfare. Then we concentrate on the mission.”

This was especially evident on the first Sunday after the accident. That morning the temperature dropped to 5 below zero with winds blowing across the river surface at 30 mph. With the wind chill factor close to 50 degrees below zero, two of the diving operations had to be canceled for the day.

“The EOD boat was the only platform with inside spaces where the divers could stay warm,” Le Jeune said. “You can’t put divers out in those elements for 45 minutes while they get ready for a dive. By the time they’re ready to go into the water, they’re pretty well shot. We don’t have any reason to take those kinds of risks.”

But even the remaining operation on the EOD dive boat had to contend with the cold. The first diver’s exhaust valve froze, and his suit filled with air, forcing him to the surface. As he was being helped aboard the boat, his gloves froze to the ladder. “He was instant icicles,” Walker said.

The unit spent the rest of the morning changing to hot-water suits and a different breathing rig. Hair dryers were employed to melt the ice from the equipment, as well as airplane de-icing fluid (glycol) and even coffee.

As the week went on, the divers surveyed the river bottom in Braille fashion, pinpointing the wreckage of flight 90. With the aid of the Army Topography and Survey Unit and a Coast Guard crew, a detailed and very precise picture was created of the impact site. This proved invaluable in locating the victims and aiding with the salvage operation and accident investigation.

Besides the cold, the ice, freezing rain and snow, the divers had to deal with another factor. “Working in a tragic situation like this causes a lot of stress,” Delaplane said. “It’s a drain emotionally, physically and mentally.

“We are all recognized as professional divers, but underneath those wet suits are hearts that feel great emotion. When we’re dealing with a tragedy of this proportion, it’s essential that we work together and, above all, be good shipmates. It’s a tough time; there’s no doubt about it.

“On the way to the crash site,” Delaplane continued, “I was thinking of the possibility of recovering all 79 people aboard the plane. The odds were so astronomically against us that I knew it would take a tremendous stroke of luck to recover them all. But we never once ruled it out.”

A week after the accident all but one victim had been recovered: an infant of 8 weeks, whose mother was one of flight 90’s survivors. Since the mother had also lost her husband in the accident, the divers were determined to recover the baby so he could be buried with his father.
Clockwise from top left: Army and Coast Guard divers search the waters around the tail section of the submerged 737 aircraft. Wreckage is lifted by crane from the Navy diving vessel. Salvation Army and Red Cross members provide hot coffee and food. Teamwork, as with these hose-carrying sailors, was essential throughout the entire operation. A Navy diver gets assistance from other divers in removing his gear after a 65-minute dive.
Bittersweet Experience

"It wasn't something we talked about, but around the troops I could feel that we were going to find the baby...nobody seemed to lose that feeling," Delaplane said.

"There was no doubt we would find him; it was just something that everybody knew and felt," said Senior Chief Gunner's Mate Charlie Richardson. "We would have spent another six days looking if that's what it would take. Communication over the phones is never very clear, but there was no mistaking it when a diver said he had found him. A lot of eyes went wet."

Delaplane added, "When I heard it, I looked outside. On each of the barges, there were people with arms around each other and shaking hands. It was some emotional release."

Later, in a conversation with the diver, Delaplane said the diver told him, "Hey captain, it was an easy dive. I had 60 guys diving with me this time."

"There's no kind of feeling comparable to that kind of human commitment. It's humbling...," Delaplane said.

The Commander of the Special Operations Division, Washington, D.C., Metropolitan Police Department, Deputy Chief John C. Connor, said that the military performed magnificently, working 10- to 12-hour days in the most brutal of conditions. "I don't think the operation could have been as successful and completed as quickly without the professional expertise brought to the site by the Navy."

"There was tremendous cooperation for such a joint operation. Credit has to be given to all the services for the 100 percent recovery of the victims under such extreme conditions of ice, snow, visibility, temperatures and the havoc of the wreck itself," Connor said. "It was an amazingly successful recovery—one which would have been remarkable even under ideal conditions."

Reflecting on the week, Commander R.W. Schroeder, the diving medical officer for Harbor Clearance Unit Two (changed to Mobile Salvage and Diving Unit Two on Feb. 1), remarked, "It's like an old saying I remember hearing back around World War II. Sometimes it takes the worst to bring out the best in people. That was sure evident here."

—Story and photos by PH1 Jim Preston
Delivering the Goods

Keeping two scientific communities 728 miles apart supplied with food and equipment is no run-of-the-mill operation. When those communities are located in the coldest, driest, most isolated area on earth, the challenge becomes positively formidable. With perseverance and personal dedication, however, members of the Antarctic Midwinter Airdrop recently met that challenge by delivering the goods—on time and in good condition—to Navy people and scientists at McMurdo Station, Antarctica, and to researchers at the South Pole.

During the austral winter, when weather conditions and deterioration of runways prevent planes from landing in the Antarctic, the people working there in support of the National Science Foundation-sponsored Antarctic Research Program depend on airdrops for supplies. Twice before, midwinter airdrops have been made at McMurdo, but this was believed to be the first ever for the South Pole station.

The drop was made by a Military Airlift Command C-141B (stretched) Starlifter from the 63rd Military Airlift Wing stationed at Norton Air Force Base, Calif. Loaded with almost 16,000 pounds of cargo, the plane flew 2,102 miles from Christchurch, New Zealand, to McMurdo Station where it airdropped 26 containers weighing a total of 13,000 pounds. The containers of fresh food, mail, magazines, newspapers, spare parts and various supply items were heading for the target zone in six seconds.

The plane then headed 728 miles inland to the Amundsen-Scott South Pole Station where another six containers, these weighing 2,750 pounds, were dropped. It then headed back to Christchurch. When the Starlifter returned to Norton Air Force Base, it had chalked up a 15,000-mile flight.

The two-drop, non-stop, 5,720-mile journey (from and to New Zealand) was made possible by midair refueling by three Stratotankers. About two and one-half hours south of New Zealand, Strategic Air Command KC-135 Stratotankers from Andersen Air Force Base, Guam, pumped a total of 65,000 pounds of fuel into the Starlifter, enabling it to travel the additional distance to the South Pole and return to Christchurch.

In previous missions, C-141A’s could not be refueled en route. Thus, airdrops were limited to McMurdo. This year, according to Lieutenant Colonel James M. Galyen, 14th Military Airlift Squadron commander and commander of the air-drop mission, “the C-141B’s refueling capability enabled us to accomplish two missions in one.”

According to Army Captain Jan Harpole, assistant terminal operations officer for Naval Support Force Antarctica, the 1981 airdrop provided the best ever survival rate for the cargo. He credited proper rigging materials and polystyrene sheets that provided additional protection and kept the fresh food from freezing in the 59 degrees below zero temperature.

Harpole also said that the 26-foot, high-velocity parachute used, instead of a 12-foot parachute, resulted in a reduction in the rate of descent from 85 to 90 feet per second to about 60 to 70 feet per second.

Credit for the design of special containers and development of the rigging system goes to Chief Warrant Officer Richard J. Langstraat, U. S. Army Liaison Office, MAC Headquarters, Scott AFB, III., who has worked extensively on the midwinter airdrops since their inception in 1979.

The midseason airdrop brought food, supplies and a touch of home to the people “wintering-over” in Antarctica. It also demonstrated the ability to provide resupply and search and rescue operations should the need ever arise.

— By JOI James L. Compton and 2nd Lt. David Hinchee, USAF

Top: 63rd Military Airlift Wing crew members prepare pallets for the second drop at the South Pole. Photo by 2nd Lt. David Hinchee. Below: An Air Force C-141 Starlifter unloads passengers on the icy runway at McMurdo Station, Antarctica. Photo by PH2 Leavitt.
American DDs

Evolution of the Destroyer

In the last decade of the 19th century, two isolated incidents in two separate wars—neither of which involved American military forces—caught the attention of the U.S. Navy. The first occurred in April 1891, during the Chilean Revolutionary War, when a small torpedo boat succeeded in sinking a steel warship, the first such sinking of an armored vessel by a self-propelled torpedo. Then in February 1895, during the Sino-Japanese War, Japanese torpedo boats attacked the Chinese fleet at Weihaiwei and sank three warships, including a battleship.

When news of these torpedo boat victories reached America, observers began to wonder about the possibility that the potent little raiders might one day pose a threat to American warships. Already, the world’s naval powers, including France, Germany, Italy and Great Britain, had begun building scores of these very dangerous boats. The United States, too, had the torpedo boat. But as yet, it had built no counterweapon fast and deadly enough to use against it.

Then, when the Spanish-American War (1898) brought American merchant ships and warships on a collision course with the Spanish fleet, an appropriation was made available for the construction of 16 “torpedo boat destroyers.” These were to be the U.S. Navy’s first destroyers. By 1904, all 16 were in commission.

The year 1909 saw the first of the steam turbine DDs. A year later, the first DDs to use oil rather than coal for fuel came down the ways. In 1915, the first gear-driven destroyers went into service.

During World War I, American shipyards began construction of the celebrated “flushdeckers.” With their clean lines, these ships (more than 270 in number) marked a departure from the previous high forecastle types. They carried 12, 21-inch torpedo tubes in triple mounts and had four 4-inch deck guns. The “flushdeckers” were 414 feet in length, had a 30-foot beam, displaced 1,100 to 1,200 tons and could make up to 35 knots top speed.

The flushdeckers served primarily as escorts for convoys that traversed the vast Atlantic; most, however, were built too late to see action in World War I. Perhaps the greatest contribution of the U.S. Navy in those perilous years was the safe escort of more than 2 million men to the battlefields of Europe. While under cruiser and destroyer protection, not one soldier, nor a single transport, was lost.

Following the Armistice, the U.S. Navy held claim to the world’s largest destroyer fleet, but peacetime brought an abrupt halt to ship construction. For more than a decade, not one new destroyer was launched. Dozens of DDs were scrapped, and several hundred were retired to the “mothball” fleet or to operations involving reduced crewing. America’s fleet began to show its age by the time new construction resumed in the early 1930s, as a national effort to create shipyard jobs during the Great Depression more so than as a result of the need to rebuild the fleet.

Among the new classes of destroyers (DDs) to come along about that time was the Porter class. These 381-footers of 50,000 horsepower were the first destroyers to require a complement of more than 200 men. They also were the first to carry twin 5-inch gun mounts.

The Gridley class was the first to mount 16 torpedo tubes, the heaviest torpedo battery carried by American DDs.

Somers-class DDs used higher pressure boilers to develop 52,000 horsepower.

Destroyer production was in full swing by the late 1930s with arrival on the scene of the Benson and Gleaves-class destroyers. In all, 96 of these types were built.
USS Spruance (DD 963), commissioned in 1975, was the first of a new class of destroyers with the primary mission of anti-submarine warfare. Highly automated, Spruance-class ships are the first large U.S. warships to employ gas turbine propulsion.
American DDs

USS McFarland (DD 237), commissioned in 1920, played a humanitarian role. In 1920-23, the ship cruised regularly to Black Sea and Anatolian ports, distributing American relief supplies to Russian, Greek and Turkish refugees and providing transportation, mail and communications facilities. In 1940, McFarland was recommissioned and redesignated a seaplane tender (destroyer) (AVD 14). Recommissioned, the ship was assigned to the Pacific Fleet. Enemy dive bombers almost destroyed the ship in 1942, but after repair and redesignation as DD 237 in late 1943, McFarland saw service on the West Coast.
USS Bagley (DD 386), third ship to bear the name, was commissioned in 1937. At Pearl Harbor when the Japanese attacked on Dec. 7, 1941, Bagley survived to take part in many South Pacific patrols and battles. With 12 battle stars, Bagley returned to the states in 1945 and was decommissioned the next year.

USS Collett (DD 730), an Allen M. Sumner-class destroyer, was commissioned in 1944. The ship saw action with the Pacific Fleet during World War II and took part in the bombardment of Inchon during the Korean War. Refitted in 1960 with the bow of Seaman (DD 791), an uncompleted destroyer in the Reserve Fleet, Collett continued with Pacific operations. It was sold to the Argentine navy in 1974.
American DDs

USS O'Callahan (DE 1051), commissioned in 1968, is named after Capt. Joseph T. O'Callahan who received the Medal of Honor for gallantry while serving on board the carrier Franklin when it endured a fiery ordeal off the coast of Japan in 1945. Now FF 1051, O'Callahan is homeported in San Diego.

USS Cook (DE 1083), a Knox-class destroyer escort, was commissioned in 1971. It was reclassified as a frigate three years later.
The destroyers built in the 1930s and after were used almost from the start as fleet units, to escort heavier units and for patrol duty.

The 2,100-ton Fletcher-class ships of 1940 will always be remembered for being the first destroyers to regularly use cafeteria-style messing rather than the berthing-style system where mess cooks carried trays from the galley to the crew's sleeping compartments where tables were set up for each meal.

Of World War II vintage were the Allen M. Sumner-class and Gearing-class ships, called “2,250-tonners.”

In the mid 1950s, the Hull-class and the Forrest Sherman-class destroyers came along, displacing more than 4,000 tons.

It was not until World War II that the United States began construction of destroyer escorts (DES). Smaller and slower than a DD, DESs evolved as replacements for the aging flushdeckers of the first global war. (In 1975, the Navy’s “all gun” destroyer escorts became known as “frigates.”)

Using various power plants, the first DESs served in the North Atlantic as convoy escorts and with the escort carrier hunter-killer groups. In the Pacific, DESs—with few exceptions—were assigned as escorts and for anti-submarine work.

There are only a few stories like the one about USS England (DE 635) which tell of the tremendous impact that destroyers have had on naval warfare. Following commissioning in 1943, England set out for operations in the southwest Pacific and its first encounter with the enemy. In the short span of 12 days, England’s crew managed the incredible feat of destroying six Japanese submarines.

In times of peace and in battle, destroyermen have proven their courage many times, sometimes by rescuing stranded populations hard hit by natural disasters, other times by pitting themselves against almost impossible odds to protect ships under their escort. To be sure, there are some stories that will never be told—stories about gallant destroyermen who vanished without a trace when their ships succumbed to the furious attack of a submarine wolf pack or a violent ocean storm.

Since World War II, new technologies have brought about rapid changes in both destroyer types and design. Guided missile destroyers (DDGs) now carry guided missiles as well as guns and anti-submarine weapons armament.

The Spruance (DD 963)-class destroyers are the latest in the Navy’s conventionally-armed destroyer fleet and the first major U.S. Navy ship class to be powered by gas turbines. In addition to anti-submarine torpedoes, two rapid-fire 5-inch/.54-caliber guns and ASROC, Spruance-class DDGs support torpedo-carrying ASW helicopters.

Since they first joined the fleet around the turn of the century, the Navy’s destroyers have often stood in the shadows of more potent warships such as submarines, battlewagons and giant aircraft carriers. Nevertheless, the “workhorses of the fleet” have left an unquestionable impact on naval warfare and will continue to do so well beyond the turn of the next century.

—Story by PO2 Steve Bellow
—Artwork by Ed Markham

USS England (DE 635) was commissioned in 1943 and sent to the South Pacific for escort duty. England’s impressive record in anti-submarine warfare is unmatched by any other American ship: six submarines sunk in twelve days. England came under attack by three Japanese dive bombers on May 9, 1945. After temporary repairs at Leyte, the ship began the long voyage to Philadelphia. England was decommissioned that October, but true to Admiral E.J. King’s pledge that “There’ll always be an England in the United States Navy,” DLG 22 was assigned the name England on Oct. 6, 1960.

APRIL 1982

37
Articles dealing with chemical warfare are usually found in technical, mostly classified publications, rather than in All Hands. However, various Navy organizations have requested more and more unclassified information on the subject, especially as it relates to Soviet chemical warfare agents. In response to this request, the Naval Intelligence Support Center has prepared the following article with a view toward acquainting naval personnel with Soviet antipersonnel chemical warfare agents. This article identifies some Soviet chemical agents, describes their properties, explains the few rules which govern the behavior of these agents in military operations and suggests some protection against the agents. It should be noted that U. S. policy has renounced all use of biological and toxic weapons and first use of lethal and incapacitating chemicals. The United States will use chemical herbicides and riot control agents only in defensive military modes. The United States does not consider smoke, flame or incendiary weapons to be chemical weapons. This is in contrast to the following article describing Soviet chemical activities.

Properties of Soviet Chemical Agents Against Naval Targets and Operations

The reported use of chemical warfare agents by Soviet allies in Yemen, Laos and Kampuchea, and possibly by the Soviets themselves in Afghanistan, has heightened awareness of the potential use of chemicals in any future phase of military operations. The term “CBR warfare” frequently is used without realizing that chemical, biological and radiological warfare agents are totally different kinds of agents, which have unique and different effects on people. Biological warfare (BW) agents are living biological microorganisms, causing diseases in man, animals or plants. Radiological warfare (RW) applies to radioactive debris usually produced by a nuclear explosion. The radiation emitted from this debris causes a breakdown of the complex chemical compounds in the human body.

Chemical warfare (CW) agents are chemical compounds which can produce harmful effects on the body. Other chemicals such as screening smokes and napalm also are used in war. The same procedures, equipment and systems provide protection from all three types of airborne antipersonnel agents (CBR), and this is the basis for the familiar association and “careless” use of the term “CBR.”

When the words “chemical warfare” are mentioned, most people immediately think of “poison gas.” The use of the word “gas” is somewhat misleading, because most of the modern combat chemicals (nerve and blister agents) are liquids when used at moderate outdoor temperatures. The explosion of missile warheads, bombs or shells with chemical filling throws the agent into the air as drops of liquid or a fine mist. However, the heat of the explosion will also vaporize or gasify some of the agent.

These agents (nerve and blister) may also be carried as liquids in tanks on airplanes and sprayed into the air as droplets or as a fine mist. As these droplets evaporate from surfaces or as the mist disperses, a gas will be formed. The more volatile the agent, the more readily gases are formed. Some of the newer harassing agents are solids (fine powder), which helps to prolong the chemical’s effect.

Agent Characteristics and Classification

Not all chemical warfare agents are designed to produce death. Incapacitating or riot control agents have been successfully and humanely used to quell civil disturbances. However, here we are dealing with the toxic chemical agents, which are considered most likely to be used against U.S. naval forces. A toxic CW agent is one capable of producing death or seriously endangering health when applied to the skin or when breathed.

The properties of chemical agents which give them such tremendous military value are their well-known ability to “shoot around corners” (that is, to enter into structures or caves that high explosive munitions cannot penetrate). When the high-explosive shell, bomb or missile warhead reaches its target and explodes, its effect is immediately over. The effect of chemical munitions does not, however,
stop once the force of the explosion is spent; depending on the CW agent used, it can remain effective and can cause casualties for hours, days and perhaps even weeks after it has been deployed.

Thus, it is very important to know how long a chemical agent will persist on board a ship, at a naval base, an airfield or in the area of a beach assault. CW agents are so flexible that their effects can be exerted for several days or can end in a matter of minutes.

Three factors of all chemical agents are the basis for selection of a particular agent for use in military operations. They are:
- The physiological effect of the agent on people.
- The tactical use and purpose in military operations.
- The agent's persistency at the target.

Physiological Effects

The most widely used classification of chemical warfare agents is based on the division of the toxic substances into groups based on the physiological effects of the chemical agents. Soviet chemical warfare agents are generally divided into the following groups (examples of some representative agents and their designators are included):
- Systemic/blood poisons (cyanogen chloride-CK, hydrogen cyanide/hydrocyanic acid-AC).
- Lung agents (diphosgene-DP, phosgene-CG).
- Incapacitating chemicals (BZ, etc.).
- Incendiaries/napalm-burn.
- Screening smokes.
- Riot control agents or irritants. These, in turn, are subdivided into tear gases (also known as lachrymators), which irritate mucous membranes of the eye (orthochlorobenzylidene malononitrile-CS) (chloroacetophenone-CN) (chloropicrin-PS) and sneezing gases (sternites), which irritate the upper breathing passages.

Tactical Use

Both antipersonnel and antiequipment type chemical agents can be used in a tactical situation. Antipersonnel agents may be employed to inflict casualties, produce incapacitation and/or control civil disturbances (riot control). The most familiar antiequipment chemical is napalm.

There is also scientific information which demonstrates the ability of some antiequipment smokes/the newer aerosol obscurant (screening smokes) chemical agents to screen regions of the electromagnetic spectrum, where reconnaissance and weapons guidance sensors function.

Persistency

The behavior of the agent on site under combat conditions is of the greatest importance and leads to the general classification of chemical agents into persistent (long lasting) or nonpersistent (short term) agents. Persistency, of course, depends on several factors other than the characteristics of the agent itself—wind, temperature,
weather and the nature of the contaminated surface all play a part. The rate of evaporation of a liquid agent from the deck of a ship or from buildings and grounds at shore facilities is increased by higher wind velocity and temperature. The agents persist much longer on a cold steel deck in the northern Atlantic than on a hot deck surface in the tropics.

Nonpersistent agents include those with comparatively low boiling points and correspondingly high volatility. These agents turn into gases or vapors very rapidly. When a munition containing agents of this type explodes, a vapor is formed, creating a surface-level poison cloud, which spreads in the direction of the wind and dissipates fairly quickly. The speed of dissipation depends on meteorological conditions and local terrain. Current chemical warfare agents which are included in this group of nonpersistent toxic agents that injure people primarily through their respiratory systems includes hydrogen cyanide and Sarin. Cyanogen chloride and phosgene are World War I agents that also fall into this category.

These nonpersistent agents would be expected to be employed at an amphibious assault beachhead but not at airfields or naval bases, where persistent agents would be militarily more effective.

Persistent toxic agents have a high boiling point and a low volatility (that is, they do not vaporize/gasify very readily). When munitions with persistent agents explode, the agent is deployed on the target mainly as liquid drops or mist, with some vapor (gas) also produced. These agents can be used to contaminate a naval base, airfield, ship or equipment. Persistent toxic agents (V-agents, Soman, Sarin, mustard and Lewisite) damage the living organism through the skin and the breathing organs.

The persistent agents remain on site from several hours in the summer to several days or even weeks in the winter. During a cold night, a deck surface or an area contaminated with persistent agents such as mustard or Soman might be crossed with very little danger, provided the feet have proper protection. On the following morning, however, after the sun has warmed the deck or the ground, enough vapor might be given off into the air to severely poison anyone passing over the deck or immediately downwind of the area.

Concentration

The concentration of a chemical agent is also important, for it is the concentration at the target that determines the result of the chemical attack. Concentration is defined as the amount of chemical agent vapor present in a unit volume of air, usually expressed in milligrams of agents per liter of air. If toxic substances enter the lungs with inhaled air, the damage depends on the concentration of substance in the air and the time a person is exposed to the agent. The effect of a chemical agent is usually in direct proportion to the concentration of the agent and the time of exposure. This means that if it takes a certain amount of gas to disable a person in five minutes, it will only take half that amount if the person is exposed for a 10-minute period of time. If a very light concentration of mustard gas is inhaled for a very short period of time, there may be no ill effects. How-
However, mustard gas is a very persistent agent, and if the exposure to this very light concentration is for a long period of time, a casualty is almost certain. Therefore, a mask should be donned and kept on at the slightest suspicion of the presence of gas.

A Soviet publication states that the lethal concentration of Soman (Soviet nerve paralytic agent) that would cause death to at least 90 percent of the human beings exposed would be 0.025 to 0.05 milligrams/minute/liter (mg/min/l). For V-agents, the fatal dose is still smaller, 0.005-0.015 mg/min/l. This means that one breath of concentrated poisoned air is fatal.

For substances which cause poisoning and death as a result of penetration through the skin, the toxic properties are expressed as the amount of toxic agent per unit of live weight of the person. Most frequently, toxicity dosage of skin-penetrating poison is expressed in milligrams of agents per kilogram of body weight. A few droplets of nerve agents on the skin will cause death unless decontamination and medical treatment is commenced within a very few minutes.

Soviet CW and Naval Operations

Frequent references in Soviet publications have stressed both persistent and nonpersistent CW agents and include the nerve paralytic agents (Soman and Sarin), blister agents (mustard and Lewisite) and the blood agent (hydrogen cyanide). Physical properties, toxicity and persistency determine which CW agents are likely to be used by the Soviets against various types of naval targets. Of these characteristics, persistency is the most important factor.

Nerve Agents (U)

Nerve agents are generally organophosphorus compounds, which can enter the body through lungs/breathing, skin, eyes or ingestion of food. They poison by deactivation of the enzyme, acetylcholinesterase. This deactivation results in muscle contractions and death by respiratory and heart muscle failure.

As mentioned previously, the nerve agents include the V-agents, Tabun (GA), Sarin (GB) and Soman (GD). Although there are differences in boiling points, toxicity, physical characteristics and chemical behavior, the cause of death, mechanism of protection and means of decontamination are basically the same. Specific information on each agent is available from other sources and will not be covered here. Some general comments can be made.

All of these agents are "extremely toxic." A few drops of the liquid in contact with bare skin and not removed within five minutes will cause death. One breath of concentrated vapor will cause death. Since these agents have little or no odor, chemical or physical detection by suitable alarm systems is necessary. The amount of vapor versus liquid and the persistency are dependent upon the boiling point of the agent. The more persistent nerve agents are useful for contamination of ships, bases and equipment with droplets of liquid agent. These, as well as less persistent agents, are effective in the gaseous state for the direct poisoning of people.

The symptoms of nerve agent poisoning include contraction of the pupils of the eye, vomiting, diarrhea, bronchial constriction and spasms, involuntary twitching, convulsions, speech disturbances and loss of equilibrium. It is absolutely essential to have a gas mask and full protection of the entire body including head, face and hands.

Vesicant (Blister) Agents

The vesicant agents, or blister agents, can be absorbed by any part of the body, causing severe blistering. They are extremely effective against eyes and the respiratory system. Although the gas mask provides complete protection to the eyes and lungs, personal protection gear is necessary to protect the entire body.

The persistent nature of blister agents suggests their use in contaminating ships, equipment and shore facilities. Since these agents cling to ship's surfaces, equipment and terrain, care must be exercised for many hours during deployment to avoid casualties by contact, even if people are not exposed during an attack.

Since mustard gas causes no immediate pain and takes several hours to produce a burn, widespread contamination of people Norwegian one-piece protective suit is designed with extra protection in areas most receptive to infiltration of chemical agents. It is worn with the MK 5 mask.
Chemical Warfare

could occur before the first symptoms begin to show. An extremely low concentration of mustard, barely detectable by smell (garlic or onion odor), will cause eye burns after an hour of exposure. In addition, the ability to detect the odor is lost within several minutes of exposure. The lungs are the next area to be affected, followed by areas of the body which perspire easily. Mustard gas was the most effective CW agent used during World War I.

Lewisite, a faster acting blister agent, produces burning sensations within a few minutes and severe burns after 30 minutes to two hours. Although Lewisite has the odor of geraniums, the minimum irritating concentration is far below a detectable level. As with nerve agents and other vesicants, it must be stressed that full protective equipment be put on and kept on at the slightest suspicion of chemical agent use.

Both blister and nerve agents in the liquid state readily penetrate some rubbers, leather and clothing fabrics. Therefore, chemical protective clothing, masks, boots and gloves are made of special materials developed to resist penetration by chemical agents. Standard issue shoes, rubber boots and foul weather gear can furnish protection against chemical agents in the liquid state for “only a short time.”

Other Chemical Agents

Other agents may be used either alone or in combination with nerve and blister agents. These include systemic/blood poisons such as cyanogen chloride (CK) and hydrogen cyanide (AC), which interrupt the oxygen transport mechanism in the blood. Lung agents diphosgene (DP) and phosgene (CG) cause suffocation by destroying lung tissue. Incapacitating chemicals, riot control agents, incendiaries and smoke are also considered chemical agents by the Soviets in contrast to U.S. policy.

Protection and Decontamination

The only real shipboard protection against CBR agents is a water washdown system, hermetically sealed compartments with filtered air, and properly equipped and trained people. The following section provides some stopgap measures which can be taken. The following description is not intended to replace existing guidelines or regulations but is meant to be complementary.

Personal Protective Equipment

In the event that full impermeable protection gear is not immediately available, some short-term protection can be obtained with several layers of clothing including gloves, hood, rubber boots, etc. Clothing with a nap such as terry cloth or flannel is superior, especially as an under layer. Towels placed on the shoulders and head under clothing will give limited protection. Foul weather gear will shed droplets of CW agents falling as rain. It must be stressed that these are not a substitute for approved protection gear, but a short-term stopgap measure. Contaminated clothing should be removed and disposed of as soon as possible. If the agent is in the gaseous state, there is “no substitute” for a gas mask.

Personal Decontamination

In the event that a person has droplets of nerve agent on exposed skin, the removal, including scraping off a thickened agent, must be accomplished with utmost care and speed. The prescribed nerve agent

Antidote should be administered only to people exposed to nerve agents. There are several chemicals found aboard ships and at naval facilities which have some efficacy in personnel decontamination. These are:

- Water solutions of laundry detergent.
- Water bleach solutions.
- AFFF (aqueous film forming foam).

Although it is well-known that strong alkalies will neutralize nerve agents, caution must be exercised in using them, because they can burn the skin, blind if in contact with eyes and degrade metals.

Previous publications have referred to organic solvents as useful for decontamination. Decontamination of people with solvent may not be the best choice because:

- The solvent may spread the agent over a wider area of the skin, thereby increasing absorption.
- Many solvents will accelerate the absorption of the agent through the skin.
- Solvents remove only the agent, and the resulting mixture is then toxic. Care must be taken in disposing of the contaminated solvent.

The two main considerations are speed and employing a technique which does not spread the agent over a larger skin area.

Equipment Decontamination

Any of the methods can be used in equipment decontamination, but care must be taken in several areas. Strong alkalies should not be used on aircraft or other aluminum equipment. Many organic solvents will dissolve paint, and most solvents are fire hazards. Scrubbing with a water solution of laundry bleach is probably the best stopgap decontamination operation for equipment as well as people.

Following a shipboard hit by a chemical agent warhead, casualties can be reduced by turning the uncontaminated part of the ship windward. For example, a hit amidships would call for steaming with the wind off the beam opposite the hit.

Conclusions

The extremely toxic nature of CW agents has produced some outlandish claims and sensationalism (i.e., a half cup of toxin will kill half the people in the world). These statements are made by people who either haven't thought through the problems of military deployment of CW or BW agents, or in their emotional zeal, they have resorted to statements which are half truths at best. The thing to remember is that most CW casualties can be avoided. Proper use of personal protective equipment and collective shipboard protective systems can reduce the number of casualties to a small percentage. By learning as much as possible about the Soviet chemical warfare agents and U.S. shipboard protective equipment, by properly maintaining protective equipment and by continuing to emphasize CW training, a person can avoid being a chemical warfare casualty if exposed to an attack.

Ship maneuvering procedures following a chemical warfare attack.
Drug offense penalties severe

Drug offenders who have been sentenced in a civil court may not have reached the end of the judicial process, as a former third class petty officer in San Diego learned recently. The petty officer, who was arrested by San Diego city police for possessing and attempting to deal in a controlled substance, was placed on one year's probation by the civil court and received a suspended sentence of six months' confinement in the county jail.

Following the trial, his command sought permission from appropriate authorities to convene a general court-martial for the offenses. Although court-martial for charges previously tried in a state court is unusual, it is not considered "double jeopardy" since military and state judicial processes are conducted by different "sovereigns." At the general court-martial, the member was sentenced to three years' confinement at hard labor, reduction in rank to the lowest enlisted paygrade and a dishonorable discharge.

The case highlights the Navy's determination not to allow the illegal use of drugs on or off duty. Explaining the requirement for different and more stringent standards of conduct in the Navy, Chief of Naval Operations Admiral Thomas B. Hayward said, "The illegal use of drugs constitutes a serious breach of discipline which undermines the very fiber of the combat readiness of our Navy," adding, "the Navy is not a mirror of society."

Quality up, desertions down

Figures released recently by the Defense Department show a decrease of nearly 7,000 unauthorized absentees and more than 5,000 deserters during fiscal year 1981 compared to FY 80. According to the Secretary of Defense, improved management in the selection of volunteers for the military services during FY 81 and the resulting higher quality of recruits accounted for the decline.

All services reported declines in both categories, and rates are the lowest experienced during the last 14 years. The Navy reduced its unauthorized absentees by 1,173 and recorded 1,950 fewer deserters than in the previous year.

Navy plans to recruit more women

The Navy will continue with a planned increase in the number of female officers to 6,400 and enlisted women from the current 35,000 level to 45,000 by fiscal year 1985. The increase supports Defense Secretary Caspar Weinberger's goal of expanding the role of women in the military and removing obstacles to fully utilizing their capabilities.

In a recent interview, Navy Secretary John Lehman Jr. said, "We have a reasonably ambitious goal to expand (the role of) women. We aim to do everything within the law to remove obstacles—to have a clear path for professional progression."
Commissary shoppers save money

Navy commissary store customers saved 20.8 percent of retail food costs and spent more than $663 million in fiscal year 1981, according to figures released in January by the Navy Resale and Services Support Office. The savings are based on supermarket price comparisons showing that retail prices for items purchased last year would have totaled $837 million, $174 million more than commissary shoppers paid.

Bachelor Cola begins overseas

A bachelor cost of living allowance (Cola) for single and unaccompanied members in high cost overseas areas was included in Navy paychecks effective Jan. 12. The Cola gives members receiving government quarters and messing 47 percent of the without-dependents rate paid to single or unaccompanied members on separate rations.

The new allowance corrects a longstanding inequity that denied single and unaccompanied members who live on base and eat in Navy messes any compensation for additional expenses incurred in overseas areas.

A tale of two ships

Destroyer tender USS Dixie (AD 14) returned to its home port of San Diego on Feb. 10, completing its 25th and final deployment. Commissioned in April 1940, Dixie is the oldest ship on continuous active service in the U.S. Navy. During its deployment, Dixie provided services for Indian Ocean units and called at Subic Bay, R.P.; Diego Garcia; Sydney, Australia; Port Louis, Mauritius; Karachi, Pakistan; and Mogadishu, Somalia. Dixie is scheduled for decommissioning in June.

When Dixie's crew members went ashore in Mogadishu, they learned that an orphans' home was badly in need of help. Deteriorating buildings showed peeling paint and broken windows. Rooms were spartan with little furniture, and the orphanage's supply of flour, sugar and rice had been destroyed in a flood. Dixie's crew acted within hours.

A working party mended what they could. They built furniture, painted the home, rewired electrical circuits, repaired small appliances, made a jungle gym and seesaw for the children and put up an outdoor barbecue and picnic table. The ship's dentist came to the home and gave dental care to needy patients. The crew raised $2,000 to help with bills and supplies. The men also accomplished the building of 30 new pairs of crutches for the home's crippled children.

Dixie's work in Mogadishu was continued by USS Oldendorf (DD 972) in a port visit soon after. U.S. Ambassador to Mogadishu, Donald K. Petterson, gave his thanks for Oldendorf's efforts, which included more construction, donations and repairs. He expressed "deep appreciation" for "the clearly evident desire of the Oldendorf's crew to assist needy Somalis." The message echoed earlier praise given to Dixie by Admiral Thomas B. Hayward, Chief of Naval Operations, and Admiral James D. Watkins, commander in chief, U.S. Pacific Fleet, who both offered their personal appreciation to crew members for what Admiral Watkins termed "an extraordinary job well done."
Shape up or ship out

Because of the success of last year’s upgrade program which allowed commanding officers to discharge people who routinely migrate between unsatisfactory and marginal performance, Project Upgrade 82 has been authorized. Under the program, commanding officers may discharge, for the convenience of the government, those who are no longer deserving of further counseling, guidance or command attention. The character of the discharge will be warranted by the individual’s record.

Details of the program are in a Jan. 16 message from the CNO to commanding officers.

Naval aviation safety record set

Navy and Marine Corps aviators made 1981 the safest year in the history of naval aviation, according to recently announced figures. The major accident (“A” category) rate was 4.95 mishaps per 100,000 flight hours, the lowest rate ever recorded in naval aviation. Vice Admiral W.L. McDonald, Deputy Chief of Naval Operations for air warfare, lauded “the professionalism of every member of the aviation community.”

He noted that figures of even this “safest” year represent the loss of irreplaceable flight crew members and valuable aviation assets and called for further efforts to attain an even lower mishap rate.

There were 29 fewer major mishaps in 1981 than in the previous year.

Navy asks reserve counselors to return to active duty

Fleet Reserve or Selected Reserve people previously designated as drug or alcohol counselors are being asked to volunteer for active duty. They will be assigned to billets at Naval Regional Medical Centers and Counseling and Assistance Centers in the continental United States and overseas. The assignments will be for a minimum of two years.

Selected reservists applying must have a Navy enlisted classification code of 9519, alcoholism treatment specialist or 9522, drug and alcohol abuse counselor. Fleet Reserve people must have held the NEC at the time of their transfer to the Fleet Reserve.

Applications for these limited billet availabilities will be filled on a first-come/first-served basis. For specific billet availabilities, call commercial (202) 695-9316, or Autovon 225-9316.
Project Handclasp in Korea

When USS Anchorage (LSD 36) and USS Monticello (LSD 35) arrived recently at Pusan, South Korea, with 25 tons of medical supplies, food, clothing and health supplies, volunteer crew members stood ready to distribute the items. All they needed was someone to identify the most needy recipients.

The small staff at the Military Sealift Command Office, Pusan, responded and made arrangements to offload and distribute the Project Handclasp material.

Accompanied by Lieutenant Commander John Walkenford, MSCO commanding officer, Lieutenant George Scott, XO, and Chong Song Chin, MSCO Pusan's supply director, Monticello crewmen distributed supplies to Mercy Hospital and Boys' Town. Anchorage sailors delivered their Project Handclasp goods to Mee Ae orphanage. MSCO staff members distributed other items to a Vietnamese refugee camp.

"We feel fortunate that we have a chance to be part of Project Handclasp," said Scott, who had compiled a list of nearly a dozen orphanages, hospitals and schools as beneficiaries of Project Handclasp. "But without the willing cooperation of the U.S. Army in Korea, we couldn't get the job done."

U.S. Navy ships carrying Project Handclasp supplies to the Far East need not worry about distribution. MSCO Pusan, one of five offices of the Military Sealift Command Far East headquartered at Yokohama, Japan, is willing and ready to help the fleet deliver such humanitarian cargo.
CPR Explained

In the January 1982 issue, All Hands printed a letter from Yeoman Second Class Asher M. Plotkin, a Naval reservist stationed in New York, who commented on a photo carried in the September 1981 issue. That particular photo, included in a feature on the 100th anniversary of the American Red Cross, depicted a training session in cardiopulmonary resuscitation.

Petty Officer Plotkin was quick to point out that the technique demonstrated in the photo was not only incorrect but was dangerous as well. “One of the first things I was taught,” he said, “was to keep the fingers off the body to avoid damage to the ribs of the victim.” He’s right but the answer we gave in the January issue hardly filled the bill. Our answer should have included the following information:

At the time the photograph was taken, the student’s hands were in the wrong position, and the instructor was in the process of correcting the technique. According to the instructor, Mr. Don Sleeper, assistant national director of first aid for the American Red Cross, the basis of all CPR instruction techniques and methods is contained in the August 1980 issue of the Journal of the American Medical Association. The journal states that, in proper CPR technique, fingers may be either extended or interlaced but must be kept off the chest. The idea is that chest compression will be on the sternum to create proper intrathoracic pressure, causing blood to evacuate the heart. If the fingers were in contact with the chest, this downward effort would be diffused, possibly causing thoracic injury.

The instructor further explained that there are some individuals who cannot do CPR properly because of wrist inflexibility which does not allow hyperextension of the fingers. Therefore, such individuals need to have the fingers in contact with the chest, but must not allow weight from the fingers to be on the chest. Weight must be totally on the heels of the hands. However, he added, this procedure must be determined only under proper classroom procedures.

The editors did not intentionally mean to mislead readers. It’s just a case where a little more information in the cutline would have explained the action in the photo. --ED.

Reunions

- USS Plunkett (DD 431)—Reunion being organized. Shipmates who served from 1941-1945 should send name and address to George A. Schweis, 18 Spruce Drive, Marshallton, R.D. 4, West Chester, Pa. 19380.
- VPB-203 (PBM)—Reunion planned for World War II members. Contact David M. Burns, c/o KOA of Sarasota, 1699 Desoto Road, Sarasota, Fla. 33580.
- U.S. Naval Test Pilot School—34th annual reunion and symposium May 1, 1982, at Patuxent River, Md. To ensure receiving an invitation, alumni should send current mailing address to Lt. Cmdr. Thom Bernsen, Reunion Coordinator, U.S. Naval Test Pilot School, Naval Air Test Center, Patuxent River, Md. 20670.
- Carrier Air Group 17 (1943-1945)—Reunion May 6, 1982, in conjunction with Association of Naval Aviation Inc.'s meeting in Anaheim, Calif. Contact Cmdr. James A. Chin, 2558 Blaze Trail, Diamond Bar, Calif. 91765; telephone (714) 598-1762.
- USS San Juan (CL 54)—Reunion May 24-26, 1982, in Norfolk, Va. Contact Capt. Will Carpenter, 1119 Aqua Drive, Stafford, Va. 22554.
- USS Furse (DD 882)—Former crew members 1968-1972 interested in June 1982 reunion contact Van Worman, Cedar Lane, Midland, Mich., 22728; telephone (703) 788-4355.
- USS Chicago (CA 29, CA 136)—Third annual reunion, June 10-13, 1982, in Millibrae, Calif. Contact M.E. Kramer, 41 Homestead Drive, Boardman, Ohio 44512 or Ken Mayenhalder, 2473 Forbes Ave., Santa Clara, Calif. 95050; telephone (408) 244-7264.
- LST 607 1944-1946—Reunion June 17-20, 1982, in Loomis, Calif. Contact Floyd Tate, 6323 Brice Road, Loomis, Calif. 95650; telephone (916) 652-6823.
- USS Chester—Third reunion June 18-19, 1982, in Media, Pa. Contact Frank LaBombar, 4 Howard Ave., Vallejo, Calif. 94590; telephone (707) 643-9098.
- USS Fanning (DD 385)—Reunion June 1982, in Des Moines, Iowa. Contact Fred Winger, 712 Hewlett St., Bakersfield, Calif. 93309; telephone (805) 323-7013.
- USS North Carolina Battleship Association (former crew members)—20th annual reunion June 20-24, 1982, in Wilmington, N.C. Contact Alton H. Starling, 10839 Hampton Road, Jacksonville, Fla. 32217; telephone (904) 268-3813.
On top again, Midshipman First Class Walter Nobles (left), last summer’s regimental commander, is this semester’s brigade commander in charge of the 4,500-member Brigade of Midshipmen at the U.S. Naval Academy. A physical science major and class treasurer, Nobles plans to enter the Marine Corps after graduation next month. Deputy brigade commander is Kevin Wilhelm (right). An aerospace engineering major, Wilhelm entered the academy after more than a year as an enlisted man. He plans to enter flight training.

APRIL 1982