Naval Research Laboratory Receives Patent for Carbon Capture Device


Story Number: NNS171003-05Release Date: 10/3/2017 1:27:00 PM
A  A  A   Email this story to a friend   Print this story
By Daniel Parry, U.S. Naval Research Laboratory Public Affairs

WASHINGTON (NNS) -- Naval Research Laboratory's (NRL) Materials Science & Technology Division and Chemistry Division have received a U.S. patent for an Electrolytic-Cation Exchange Module (E-CEM), a key step in synthetic fuel production from seawater, August 1.

The world's oceans cover approximately 70 percent of Earth's surface and contain roughly 93 percent of the planet's carbon dioxide (CO2). With around 38,000 gigatons (Gt) of carbon, our world's oceans contain 16 times as much carbon as that found on land or in the atmosphere combined.

"With greater attention being directed at mitigating the effects CO2 can have on the environment, an interesting and attractive alternative is to recycle the gas into energy-rich molecules," said Dr. Heather Willauer, research chemist, U.S. Naval Research Laboratory (NRL). "The process, based on Fischer-Tropsch technology, is CO2 neutral and eliminates the emission of sulfur and nitrogen compounds that are produced from the combustion of petroleum derived fossil fuels."

Building on the concept of capturing this natural resource, researchers at NRL have developed and received patent 9,719,178, by the U.S. Patent and Trade Office (USPTO), for an electrolytic-cation exchange module (E-CEM). Under this design, the E-CEM is capable of simultaneously extracting CO2 from seawater and producing hydrogen (H2).

"In our previous work, the initial scale-up and integration of the E-CEM into a skid platform provided us the data needed to establish faster acidity equilibrium for future modules and improve energy efficiencies and production," said Willauer. "This technology provides the Navy the capability to produce fuel stock, at sea or in remote locations, for the production of synthetic LNG, CNG, F-76, and JP-5 petroleum products."

Located at NRL's Marine Corrosion Facility, Key West, Florida, the next generation, modified E-CEM, demonstrates the progressive steps forward toward integrating and commercializing these systems. The result, at present, is a 33 percent improvement in production time of CO2 and H2 with a feedstock production rate of a single E-CEM capable of producing more than one gallon of fuel per day - contributing to the removal of nearly five tons of CO2 per year.

The Office of Naval Research (ONR) and NRL jointly support the research. The research team includes, Heather Willauer, Materials Science & Technology Division, NRL; Felice DiMascio, ONR; Dennis R. Hardy, NOVA Research Inc.; Jeffrey Baldwin, Acoustics Division NRL; Matthew Bradley, Materials Science & Technology Division; James Morris, Materials Science & Technology Division, NRL, Ramagopal Ananth, Chemistry Division, NRL, and Frederick W. Williams, Chemistry Division, NRL.

For more information, visit www.navy.mil, www.facebook.com/usnavy, or www.twitter.com/usnavy.

For more news from Naval Research Laboratory, visit http://www.nrl.navy.mil or http://www.navy.mil/local/nrl/.

 
RELATED PHOTOS
Aviation Boatswain's Mate (Fuel) Airman Taylor Austin tests aircraft fuel in the fuel lab aboard the Nimitz-class aircraft carrier USS Abraham Lincoln (CVN 72).
170511-N-NN369-110 ATLANTIC OCEAN (May 11, 2017) Aviation Boatswain's Mate (Fuel) Airman Taylor Austin tests aircraft fuel in the fuel lab aboard the Nimitz-class aircraft carrier USS Abraham Lincoln (CVN 72). Abraham Lincoln is underway after successfully completing its mid-life refueling and complex overhaul and will spend several days conducting sea trials, a comprehensive test of many of the ship's key systems and technologies. (U.S. Navy photo by Mass Communication Specialist 3rd Class Jessica Paulauskas)
May 12, 2017
Navy Social Media
Sign up for email updates To sign up for updates or to access your subscriber preferences, please click on the envelope icon in the page header above or click Subscribe to Navy News Service.